Here are the latest updates for jrd1415@yahoo.com
- Atomic Clusters of gold nanoparticles could lead to 3D real time telepresence
- 'Nano machine shop' shapes nanowires, ultrathin films
- My God, It is full of black holes, millions of black holes
- Samsung Announces the Galaxy Note 2 at IFA and other products
- New technique could mean super thin, strong graphene-based circuits
- Flat lens offers a perfect image
- Robotic Vehicles and Highway Capacity
- More Recent Articles
- Search Next Big Future
- Prior Mailing Archive
Central Florida Professor Jayan Thomas is working with gold nanoparticles and studying their properties when they are shrunk into a small size regime called nanoclusters. Nanoclusters are on the small end and nanocrystals are on the larger end of the nanoregime. Nano clusters are so small that the laws of physics that govern the world people touch and smell aren’t often observed.
A new "nano machine shop" that shapes nanowires and ultrathin films could represent a future manufacturing method for tiny structures with potentially revolutionary properties.
The structures might be tuned for applications ranging from high-speed electronics to solar cells and also may have greater strength and unusual traits such as ultrahigh magnetism and "plasmonic resonance," which could lead to improved optics, computers and electronics.
The researchers used their technique to stamp nano- and microgears; form tiny circular shapes out of a material called graphene, an ultrathin sheet of carbon that holds promise for advanced technologies; and change the shape of silver nanowires, said Gary Cheng, an associate professor of industrial engineering at Purdue University .
This illustration depicts a new nano machine shop's ability to shape tiny wires, an advance that represents a possible future manufacturing method for applications ranging from high-speed electronics to solar cells. (Purdue University image/Gary Cheng)
Nature Photonics - Laser nanofabrication: New regimes for nanoshaping
Read more »
NASA's Wide-field Infrared Survey Explorer (WISE) mission has led to a bonanza of newfound supermassive black holes and extreme galaxies called hot DOGs, or dust-obscured galaxies.
Images from the telescope have revealed millions of dusty black hole candidates across the universe and about 1,000 even dustier objects thought to be among the brightest galaxies ever found. These powerful galaxies, which burn brightly with infrared light, are nicknamed hot DOGs.
"WISE has exposed a menagerie of hidden objects," said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. "We've found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust."
With its all-sky infrared survey, NASA's Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Image credit: NASA/JPL-Caltech/UCLA
Arxiv - Mid-Infrared Selection of AGN with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-Selected AGN in COSMOS
Arxiv - The First Hyper-Luminous Infrared Galaxy Discovered by WISE
Arxiv - Submillimeter Follow-up of WISE-Selected Hyperluminous Galaxies
Read more »
TheVerge - Samsung officially released the Galaxy Note II. It is thinner and lighter than the first Note. The new Note device comes with a redesigned S Pen stylus, a bevy of new software features layered atop Android 4.1, and an enlarged 5.5-inch display. It has an 1.6GHz quad-core Exynos processor.
The physical design and materials, however, are a direct match to Samsung's Galaxy S III, which launched earlier this year. The Note II even uses the same 8-megapixel camera. The software interface looks identical to the GS III's, but for the S Pen-specific "Magic Wand" sub-homescreen and a selection of other stylus enhancements. NFC, a choice of two colors (Mountain White and Titanium Gray), and three storage options (16GB, 32GB, or 64GB) are other similarities to Samsung's flagship smartphone. 2GB of RAM will come standard on the Galaxy Note II.
It has a high 3100mAh capacity battery.
Read more »
An IEEE paper assessed the increase in highway capacity.
The increase in highway capacity when using sensors alone is about 43%.
The increase in highway capacity when using both sensors and vehicle to vehicle communication is about 273%.
Current maximum throughput is 2200 vehicles per hour per lane of highway.
Highway capacity increases was also analyzed by the California PATH program. Automation will allow shorter vehicle gaps and narrower spacing from more precise turning.
Platooning cars could get to 400% increase in highway capacity with 25% margin for merging. Longer platoons with smaller gaps enable higher capacity. The most capacity is not always needed and under most circumstances larger gaps and shorter platooning can be used. Platooning also allows the following cars to draft behind the lead vehicle in order to save on fuel.
Read more »
More Recent Articles |
|
|