The transparent electronics that were pioneered at Oregon State University may find one of their newest applications as a next-generation replacement for some uses of non-volatile flash memory, a multi-billion dollar technology nearing its limit of small size and information storage capacity.
Researchers at OSU have confirmed that zinc tin oxide, an inexpensive and environmentally benign compound, has significant potential for use in this field, and could provide a new, transparent technology where computer memory is based on resistance, instead of an electron charge.
Solid State Electronics - Resistive switching in zinc–tin-oxide
Abstract
Bipolar resistive switching is demonstrated in the amorphous oxide semiconductor zinc–tin-oxide (ZTO). A gradual forming process produces improved switching uniformity. Al/ZTO/Pt crossbar devices show switching ratios greater than 103, long retention times, and good endurance. The resistive switching in these devices is consistent with a combined filamentary/interfacial mechanism. Overall, ZTO shows great potential as a low cost material for embedding memristive memory with thin film transistor logic for large area electronics.
Highlights
► We present the first report of resistive switching in zinc–tin-oxide (ZTO).
► ZTO is the leading alternative material to IGZO for TFTs for LCDs.
► ZTO has an advantage over IGZO of lower cost due to the absence of In and Ga.
► Al/ZTO/Pt crossbar RRAM devices show switching ratios greater than 1000.
► ZTO shows promise for embedding RRAM with TFT logic for large area electronics.
Read more »
This month, a paper reporting results from the LysoSENS project that SENS Foundation funds at Rice University will be published in the printed edition of Biotechnology and Bioengineering. (The paper is already available online.) The research that produced these results was primarily performed by Dr. Jacques Mathieu in the lab of Dr. Pedro Alvarez, in Rice University’s Department of Environmental Engineering. The project has focused on identifying enzymes that can degrade or modify 7-ketocholesterol (7KC) in the lysosomal environment. Because the cytotoxic effects of 7KC on the lysosomes of macrophages and foam cells are a root cause of atherosclerosis, such enzymes could ultimately be used in vivo as a new class of regenerative therapies to prevent and reverse heart disease.
Norwegian University of Science and Technology (NTNU) researchers report they have patented and are commercializing gallium arsenide (GaAs) nanowires grown on graphene, a hybrid material with competitive properties. Semiconductors grown on graphene are expected to become the basis for new types of device systems, and could fundamentally change the semiconductor industry.
A new laser-based system blasts microscopic jets of drugs into the skin could soon make getting a shot as painless as being hit with a puff of air.
The system uses an erbium-doped yttrium aluminum garnet, or Er:YAG, laser to propel a tiny, precise stream of medicine with just the right amount of force. This type of laser is commonly used by dermatologists, “particularly for facial esthetic treatments,” says Jack Yoh, professor of mechanical and aerospace engineering at Seoul National University in South Korea, who developed the device along with his graduate students.
A time-lapse image showing a microjet fired from the laser-based injection system. Traveling through the air, the liquid in this experiment reaches a velocity of 30 meters per second (nearly 100 feet per second). Credit: Optics Letters.
Optics Letters - Er:YAG laser pulse for small-dose splashback-free microjet transdermal drug delivery
Other Needle Free Drug Delivery
The old series of Star Trek had a needle free hypospray. The hypospray has a real world counterpart called a jet injector, invented four years before the first Star Trek series debuted. It uses compressed air to inject the medication through the skin. However, unlike the hypospray, it carries the risk of cross-contamination, which has led to the jet injector falling into disuse. It also has limits for adjusting and controlling the exact dosage levels. The mechanisms used, particularly in spring-loaded designs, are one shot releases, with a coil that ejects the same amount of drug to the same depth every time, which limits the application to certain drugs or patient populations.
The U.S. Food and Drug Administration approved a device which uses ultrasonic waves to open pores on the skin, allowing the injection liquid to enter the bloodstream without the use of needles.
Read more »
Technology Review - Researchers have used a neural implant to recapture a lost decision-making process in monkeys—demonstrating that a neural prosthetic can recover cognitive function in a primate brain. The results suggest that neural implants could one day be used to recover specific brain functions in patients with brain injuries or localized brain disease.
While the results of today's study may take many years to translate into humans, they suggest that even cognitive processes, such as deciding whether or not to grab a cup of coffee or remembering where you left your keys, could one day be augmented by brain chips.
Paralyzed patients have previously used brain implants and brain-machine interfaces to control robotic arms. And more than 80,000 Parkinson's patients around the world have a deep-brain stimulation implant, which functions like a pacemaker to reduce their tremors and other movement problems. In the new study, however, the implants could actually interpret neuronal inputs from one part of the brain and effectively communicate those outputs to another brain region.
More advanced versions of brain implants will eventually restore brain functions and memories in humans and could eventually lead to tranhumanist enhancement of brain function.
Read more »
DARPA merges structural engineering principles with new fabrication technologies to demonstrate microstructural control of materials at the micron level.
Exquisite buildings like the Eiffel Tower were made possible because of advances in structural engineering design methods. Truss structures, like the Eiffel Tower, are highly efficient; they can carry the same loads as solid structures, but at approximately one tenth of the weight. This weight and strength advantage is also what enabled the dramatic increase in building heights between 1885 and 1930, when buildings went from an average of ten stories to more than 100 stories, as epitomized by the Empire State Building.
Drilling down a level to the materials that make up a structure, there is room again for dramatic improvements in strength, weight and other properties. With current technologies, materials are generally made using bulk processing methods. Bulk processing limits material properties because it provides insufficient control of the morphology, or form, within a material’s microstructure. The microstructure refers to the arrangement of the constituents that make up a material at the microscopic (material grain) level. The lack of full control in the microstructure allows for flaws in materials. However, if the limitations of bulk processing can be overcome, the range of material properties available might be greatly increased.
DARPA’s Materials with Controlled Microstructural Architecture (MCMA) program seeks these kinds of breakthroughs. In an attempt to overcome the limitations of bulk processing and achieve its goals, MCMA is combining engineering principles developed for large structures with emerging fabrication techniques to engineer and control the architecture of a material’s microstructure down to the micron level. This control allows researchers to develop materials with greatly enhanced properties. For instance, as demonstrated in the video below, DARPA was able to construct a material so light that it can rest atop a bubble. MCMA researchers are working toward the goal of developing a material that is as strong as steel, but as light as a plastic. To do so, they are exploring the full range of properties that can be manifested as functions of truss design and weight in a material’s microstructure.
Read more »
DARPA and Boston Dynamics walking robot LS3 systemunderwent its initial outdoor test earlier this year and has matured through continual testing and improvements to the point that two functioning platforms have started to run through the paces similar to what they could one day experience carrying gear for a squad of Marines or Soldiers. The goal of the LS3 program is to demonstrate that a legged robot can unburden dismounted squad members by carrying their gear, autonomously following them through rugged terrain, and interpreting verbal and visual commands.
The system will help a squad carry about 400 pounds of gear.
“We’ve refined the LS3 platform and have begun field testing against requirements of the Marine Corps,” said Army Lt. Col. Joe Hitt, DARPA program manager. “The vision for LS3 is to combine the capabilities of a pack mule with the intelligence of a trained animal.”
During today’s event, the LS3 prototype completed trotting and jogging mobility runs, perception visualization demonstration and a soldier-bounded autonomy demonstration.
Today’s demo also exhibited reduced noise levels for the robots. “LS3 is now roughly 10 times quieter than when the platform first came online, so squad members can carry on a conversation right next to it, which was difficult before,” Hitt said.
Read more »
More Recent Articles |
|